Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Fourth Semester B.E. Degree Examination, Dec.2018/Jan. 2019 Field Theory

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART – A

1 a. State and explain Gauss's law

(06 Marks)

- b. A line charge densities of 24 nc/m is located in free space on the line y = 1, z = 2.
 - i) Find E at p(6, -1, 3)
 - ii) What point charge QA should be located at Q(-3, 4, 1) to cause Ey to be equal to zero at point P. (08 Marks)
- c. A vector field $\overline{D} = \left(\frac{5r^2}{4}\right)\overline{a}_r$ given in spherical coordinates. Evaluate both sides of divergence

theorem for the volume enclosed between $\theta = 0^{\circ}$ to $\theta = \frac{\pi}{4}$ and r = 4m. (06 Marks)

- 2 a. Show that the vector electric field intensity E is the negative gradient of scalar electric potential V. (06 Marks)
 - b. Obtain the boundary conditions between the two dielectric materials of permittivities ε_1 and ε_2 . (08 Marks)
 - c. Give $V = 2x^2y 5z$ at point p(-4, 3, 6). Find the potential, electric field intensity and volume charge density. (06 Marks)
- 3 a. State and prove uniqueness theorem.

(08 Marks)

- b. Two concentric conducting spheres have radius of 3cm and 5cm. The region between them is filled with a homogeneous dielectric for which $\varepsilon_r = 5$. If the potential of the inner sphere is 100 volts while that of the outer sphere is -100 volts, find:
 - i) V
 - ii) E
 - iii) D
 - iv) the value of r at which V = 0.

(08 Marks)

- c. If a potential $V = x^2yz + Ay^3z$, find.
 - i) The value of 'A', so that V satisfies the Laplace's equation
 - ii) With the value of 'A' determine electric field at (2, 1, -1).

(04 Marks)

- 4 a. Using Biot-Savart law obtain the magnetic field intensity expression due to an infinite length conductor carrying current I amps along Z direction. (06 Marks)
 - b. Discuss the concept of scalar and vector magnetic potential.

(08 Marks)

- c. In cylindrical coordinates a magnetic field is given as $H = [2\rho \rho^2] \bar{a}_{\phi} A/m$.
 - i) Determine the current density
 - ii) What total current passes through the surface z = 0, $0 \le \rho \le 1$ in the \bar{a}_z direction.

PART - B

- Derive an expression for the force on a differential current carrying element. (06 Marks)
 - b. A current filament carrying 8 A in the \bar{a}_z direction lies along the entire z axis n free space. A rectangular loop connecting A(0, 0.2, 0) to B(0, 0.2, 0.3) to C(0, 0.7, 0.3) to D(0, 0.7, 0.2)

to A lies in the x = 0 plane. The loop current is 3mA and it flows in the \bar{a}_z direction in the AB segment.

- i) Find F on the AB segment
- ii) Find F on the side DA
- (08 Marks) iii) Find F_{total} on the loop. c. Define mutual inductance. Calculate the inductance of 400 turns wound on a solenoid with
- 10cm diameter and 50cm length. Assume that solenoid is in air. (06 Marks)
- What is inconsistency of Ampere's law with the equation of continuity? Derive the modified (08 Marks) form of Ampere's law of Maxwell.
 - Starting from Faraday's law of electromagnetic induction derive $\nabla \times \overline{E} = -\frac{\partial B}{\partial t}$. (06 Marks)
 - c. For the losses dielectric $\sigma = 5$ s/m and $\epsilon_r = 1$. The electric field intensity is $E = 100 \sin 10^{10} t$. Find J_C, J_D and frequency at which both have equal magnitude. (06 Marks)
- Determine the relation between E and H of an EM wave travelling in z direction.

(10 Marks)

Obtain the solution of wave equation for uniform plane wave propagating in free space.

(10 Marks)

With necessary equations, explain standing wave ration.

(10 Marks)

A 100 V/m, 3 GHz wave is propagating in material having $\varepsilon_{R1} = 4$, $\mu_{R1} = 1$ and $\sigma = 0$. It is normal to another perfect dielectric in region 2, z > 0, where $\varepsilon_{R2} = 9$, $\mu_{R2} = 1$. Calculate, phase constants, coefficient of reflection, transmission and standing wave ratio.